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1. INTRODUCTION

Melt convection, along with species diffusion and segregation on the solidification

interface are the primary factors responsible for species redistribution during HgCdTe

crystal growth from the melt. As no direct information about convection velocity is

available, numerical modeling is logical approach to estimate convection. Furthermore

influence of microgravity level, double-diffusion and material properties should be taken

into account. In present study HgCdTe is considered as binary alloy with melting

temperature available from phase diagram. The numerical model of convection and

solidification of binary alloy is based on the general equations of heat and mass transfer in

two-dimensional region. Mathematical modeling of binary alloy solidification is still

challenging numerical problem. Rigorous mathematical approach to this problem [1] is

available only when convection is not considered at all. Proposed numerical model was

developed using finite element code FIDAP [2].

It is well known, that solidification interface shape is controlled primarily by the heat

fluxes via interface as well as via ampoule walls. The appropriate temperature boundary

conditions on the ampoule walls was obtained from the global model of AADSF furnace

[3], that includes radiative, conductive and convective heat transfer. Alternatively

experimental temperature measurements were used to generate temperature boundary

conditions for the numerical model. Two complimentary solutions where obtained: one for

melt region with a fixed boundary and other for melt region with an unknown boundary. In

the former case, numerically converged solutions where typically easily obtained with

standard FIDAP settings, while in the latter case a special choice of relaxation factors for

each degree of freedom was required. The simplified model with fixed interface shape was



especially useful for parametricstudy of convection, as the steady state solution was

available for a broad range of parameters.

In the complete numerical model with unknown boundary the following thermophysical

properties of HgCdTe was taken into account: the pseudobinary HgTe-CdTe phase

diagram [4], the segregation coefficient, an assumed diffusion coefficient for mass

transport in HgCdTe, the temperature and composition dependence of the melt density (to

calculate buoyancy force) and the melt viscosity and its temperature dependence [5]. The

composition dependence of diffusion coefficient was not considered, although it might be

important for double-diffusion convection. In the simplified model with the fixed

boundary melting temperature was fixed instead of being calculated from phase diagram.

The basic physics that controls shape of the solidification interface is as follows. Due to

the large separation between the liquidus and the solidus, there is a wide variation of

composition through the boundary layer adjacent to the interface. Cooling from below and

the segregation at the solid-melt interface of the heavier HgTe-rich solute each tend to

suppress convection. However, the thermal conductivity of the solid HgCdTe is a factor of

eight times smaller then the melt and there is a resulting thermal short circuit through the

ampoule (fused silica); this results in curved isotherms in this region as the heat cannot

travel parallel to the axis within the center of the sample. The interface is therefore curved

and, due to the thermal and solutal convection is neither an isotherm nor a line of

isoconcentration. Double diffusion also contributes to the mass transport. In the present

study, the numerical model is used to consider both these source of mass transport.

2. MATHEMATICAL MODEL AND NUMERICAL PROCEDURE

The main features of the model are double-diffusion convection in the melt and

solidification. The set of steady state Navier-Stokes equations in Boussinesq

approximation along with energy and solutal balance equations are used [21. In the

following u is melt convection velocity, R is sample pulling velocity (assumed at the

steady state to be equal to crystal growth velocity), p - pressure. 9 - density, g -

microgravity acceleration, [_T and [_C - volumetric expansion coefficients due temperature

and concentration change respectively, T o and C o -referefice temperature and

concentration, !a - dynamic viscosity, D mass diffusion coefficient, k - thermal



conductivity,Co -

used to refer to solidified and molten parts of the sample.

Momentum conservation equation

19(u V u) = - Vp + gAu + 13g[ 1 - [_T( T - TO) + [_c(C - CO) ] (1)

Mass conservation equation (Boussinesq approximation) Vu = 0 (2)

En ergy con servati on eq u ati on p C P ( u V T ) = V (k V T ) ( 3

Species conservation equation uVC = DAC _4)

The boundary conditions incorporate major physical assumptions in order to describe

solidification of an unknown interface between molten and solidified HgCdTe. These

phase change boundary conditions are as follows.

The melting temperature is determined by

dT

T m = T s = To(Co) + m(C)C m where m(C) dC (5)

The heat balance on the interface, including latent heat release (L) is

• "> .'> ( -_-_1 • n (6)k rn V T m n-ksV T s n = p s L R dS _,

Here t stands for pseudo-time, i.e. artificial melting time, used in the model to allow

interface adjustment in accordance with temperature field and phase diagram. Notation n

is unit vector normal to the interface.

The balance of the mass flux across interface is Pm U - • n = Ps R - • _ (7)

The no-slip boundary condition at the interface is (u - R) x _n = 0 (8)

The mass balance for solute transport across the interface is

_, dS _ C m u- • n (9)
DmVC m • n- DsVC s • n = C s -'-d7 " - "_

The chemical equilibrium on the interface is C s = KC m (10)

Value of segregation coefficient vc can be obtained from phase diagram as it represents

ratio of solidus to liquidus concentration values. In case of HgCdTe value of 4.0 was good

estimation. To perform actual calculations initial temperature and solutal field, convection

velocities and interface position are required. In order to obtain a steady state solution of

specific heat at constant pressure. Furthermore indexes "'s" and "m" are



theproblem(1-4) with boundaryconditions(5-11)a threestepnumericalprocedurewas

used.On the first computationalstepthe positionof interfacewas flat and fixed, and so

variableS = 0. Initial zerovelocity field andconstantinitial distribution of temperature

and concentrationwere used to obtain the solution of double-diffusion convection

problem in two-dimensional area with fixed boundaries, that satisfies temperature

boundaryconditions.This solutionwasusedasinitial conditionsduring the secondstep,

whenvariableS wasreleasedandtheinterfaceshapewasobtainedwith properadjustment

of thecomputationalmesh.A final third stepwasrequiredto obtainaconvergentsolution

for all variablesinvolved. Two-dimensional9-nodequadrilateral finite elementswere

implemented.Due to strongnonlinearityof theproblem,a relaxationfactorvalueashigh

as 0.9 was used for surfaceelevation variable S. A first-order upwinding numerical

schemewasused [2]. For parametricstudiesa model wassimplified by elimination of

independentvariable S with appropriateboundaryconditions on the fixed solid/ melt

interface.

3. NUMERICAL TEST PROBLEM: DOUBLE-DIFFUSION CONVECTION

Double-diffusion convection governed by set of equations 1-4 occurs in a two-

dimensionalsquareenclosurewhich is heatedand salt rich at the bottom. The vertical

boundariesremainedisolated.This is a caseof opposingor counteractingflow, sothat as

the heat impact tends to start convection, the salt introduction from below tends to

suppressit. It is also known as a "diffusive" regime, as the componentwith a higher

diffusivity (heat)hasa destabilizingeffect,while the componentwith a lower diffusivity

(salt) has a stabilizing effect on the local density gradient. The complete set of

nondimesionalparametersfor this problemincludethermalandsolutalRayleighnumbers.

basedonenclosureheightH andtopto bottomdifferences of temperature and salt. Prandtl

and Lewis numbers and aspect ratio. Results presented on fig 1, indicate good agreement

with data from [6].

4. RESULTS AND DISCUSSION

Two complimentary solutions are presented here.

The first one is based on the complete model described in section'2. In this case typical

distribution of temperature field along with pattern of melt flow is presented on fig2a. For

comparison experimental photograph featuring "quenched" interface is presented on fig



2b. Goodagreementin shapeis mainly due properchoiceof thermal conductivitiesof

solidified and molten materialaswell as silica ampoulethermal conductivity and wall

thickness.The strict vertical orientationof the samplemanifestsitself in a symmetrical

patternof theflow. In othersimulatedcasesdeviationfrom thevertical of only 1degree

caseslossof symmetryandformation of one cell patternof convection.Thesecasesare

featuredin the video film. The shapeof interfaceclosely fits and is almost the sametot

various levels of gravity. This strongly suggests that convection in the melt virtually has no

effect on solidification interface curvature in this particular case. Further efforts arc

required to investigate this finding in more detail. It should be noted, that simulation of

this problem using non-dimensional parameters, like Rayleigh number, can be confusing

in this case, as the driving force for convection is not a vertical or a simple radial gradient,

but rather a radial temperature gradient created by the curvature of the solidification front.

Otherwise the cooling of the melt from below and rejection of the heavier component

(HgTe) would suppress convection. The radial variation in concentration is only in fair

agreement with experimental observation. It appears, that the calculated temperature

radial variation is about 7°C less than expected variation of 20 °C, as was estimated using

experimental data.

The second set of solutions is based on simplified model with fixed solid / melt interface.

Parametric study of maximum convection velocity depending on microgravity conditions

is presented on fig 3. It is clear, that the maximum velocity of convection occurs, when

ampoule is inclined at 900 , while if ampoule is strictly vertical convection is less by factor

of 50%. These data strongly suggest, that in order to reduce convection in the melt.

vertical orientation of the ampoule is of utmost importance. This is valid till gravity level

of order 10 -6 of gravity on Earth. However at very low gravity, of order 10 -7 and 10 -8 of

earth gravity the tilt of the ampoule has much less effect in absolute values of convection

velocity.

5. CONCLUSIONS

Prediction of solidification interface shape and flow pattern in molten HgCdTe for various

gravity conditions are available using a 2-D model of melt conveciion and solidification.

This model utilizes temperature boundary conditions from results of modeling of heat

transfer in AADSF furnace, and incorporates all basic modes of heat transfer, such as



conduction,convectionandradiation.Alternatively,ameasuredexperimentaltemperature

profile canbeused.

It appearsthat crystal/melt interfaceshape,as well asconcentrationdistribution on the

interfacedependprimarily on heatflow andconcentrationdistributionin closevicinity of

interface.The modelsability to predict correctly the interfaceshapeand concentration

distribution heavily dependson known material properties,such as conductivity and

segregationcoefficient.

Maximum convectionvelocity in the ampouleis extremely sensitiveto gravity vector

orientation and can be reduced at least by factor of 50% if vertical orientation of ampoule

is strictly observed. This conclusion is valid to microgravity level of about 10 -7 compared

to earth gravity. If microgravity is about 10 -8 absolute values of convection in the melt are

very low, and convection can be considered as not sensitive to the ampoule orientation.
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Figure 3.

Maximum convection velocity in the HgCdTe melt as function of gravity vector

inclination. Angle of 90 degree corresponds to the strict vertical orientation of the sample.
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Figure 2.

a) Temperature field and convection patterns in the case of strict ve:'t.ical orientation of the sample.

b) Experimental photograph of the interface shape. Case MCT-I6Q.


